Special Annuity Factor formula

Document	Title – Author	Date	Publisher	Pages
Jordan	Life Contingencies by Chester Wallace	1067	Society of	41
	Jordan	1907	Actuaries	
Kellison	The Theory of Interest by Stephen G.		Richard D.	49-50
	Kellison	1070	Irwin, Inc.	
		1970	Homewood, IL	
			60430	
Atkinson	Life Insurance Products and Finance by		The Society of	
	David B. Atkinson, FSA & James W.	2000	Actuaries	635-636
	Dallas, FSA			

In Application # 09//804,667 the following formula is given for a *special annuity factor*:

Special Annuity Factor =
$$\begin{bmatrix} n-1\\ \sum v^t \end{bmatrix} + \begin{bmatrix} v^n x \sum_{s=0}^{\infty} v^s x_s p_{x+n} \end{bmatrix} (1+L)$$

Where:

v	=	1/(1+AIR)	
AIR	=	assumed investment rate for variable	
		annuities or guaranteed investment rate for	
		fixed annuities	
n	=	number of years in the liquidity period	
Σv	=	present value, discounting for interest only,	
		of \$1 paid annually from t=0 to t=n-1	
$\mathbf{v}^{\mathbf{n}}$	=	present value, discounting for interest only,	
		of \$1 paid at t=n	
Σv ^s x	sp _{x+n} =	present value, discounting for interest and	
		mortality, of \$1 paid annually from s=0 to	
		the end of the mortality table	
L	=	expense load (positive or negative).	

There are two parts of the *special annuity factor* as defined in the highlighted text. For simplicity¹ it is assumed that annual payouts are made even though payments from an annuity are typically made with a monthly frequency. Therefore these formulas are constructed with an annual payout assumption.

The expression of the special annuity factor is well known by actuaries in the insurance industry. Its two parts are:

¹ See 7,089,201 col. 7, line 22: "For simplicity, this formula assumes annual variable annuity benefit payments."